Relevant crops for protein extraction

Kristian Thorup-Kristensen and Nanna Karkov Ytting

Dept. Plant and Environmental Sci.
Demands for crops for protein extraction

- **Low production cost at farm**
- High protein production per hectare
- Low production cost
- Fit well into cropping systems

- **Low extraction cost and high value product**
- High protein yield per unit biomass processed
- High protein quality, amino acid composition
Protein for organic farming

• Easy to produce protein in ley crops with legumes
 • But only for ruminant animals

• Difficult to produce seed protein in organic farming
 • Grain legumes = weed and rotation problems
 • Field bean, field pea, lupin
 • Oilseed crops = high N fertilizer demand

• Stockless organic farms need ley crops with legumes!
 • Soil fertility
 • Nutrient management
 • Weed management
Protein quality of extracted protein
- leaf protein less variable than seed protein

• Seed protein is mostly storage protein
 • Function does not restrict the composition
 • Often unbalanced amino acid composition
 • Strongly variable among plant species

• Leaf protein consist of functional proteins
 • Function in photosynthesis determine composition
 • More balanced amino acid composition
 • But relatively constant among plant species
Protein production from organic farming

• Species
 • Amino acid composition and productivity

• S fertilization
 • Amino acid composition and maybe productivity

• Harvest strategy
 • Balancing production cost vs.
 • Protein production and extractability
 • Biomass production
Dry matter content in fresh biomass

- Brassica napus
- Brassica oleracea
- Isatis tinctoria
- Raphanus sativus
- Sinapis alba
- Dactylis glomerata
- Lolium perenne
- Phleum pratense
- Poa pratensis
- Poa trivialis
- Anthyllis vulneraria
- Lotus pedunculatus
- Medicago sativa
- Onobrychis vicifolia
- MTrifolium repens
- Vicia villosa
- Carum carvi
- Cichorium intybus
- Plantago lanceolata
- Rumex rugosus
- Sanguisorba officinalis
Crude protein content in fresh biomass

![Graph showing crude protein content for various plants]
Crude protein recovery in green juice
Protein recovery, effect of dry matter content

\[y = 73 - 1.15x \]

\[R^2 = 0.28, \ P \leq 0.0001 \]
Protein recovery, effect of protein content

Protein recovery in green juice (%) vs. Crude protein content in fresh biomass (%)

\[y = 38 + 0.75x \]

\[R^2 = 0.18, \ P \leq 0.01 \]
Species and amino acids - % of crude protein content

Species	16 amino acids analysed for as percentage of crude protein content (%)	Min	ALA	SE	ARG	ASP	CVS	GLU	GLY	HIS	ILE	LEU	LYS	MET	PHE	PRO	SER	THR	VAL	CYS	ME							
Brassica napus	75	2.9	4.5	0.2	4.5	0.2	7.8	0.4	1.1	0.0	13.3	0.5	3.9	0.2	1.6	0.0	3.6	0.1	6.1	0.3	5.1	0.2	1.4	0.1	3.8	0.2	5.7	0.4

Significant difference between species

- *** indicates significance at the 0.001 level
Histidine, % if crude protein
Cystine, % of crude protein
Conclusions on species

- Limited differences in amino acid composition
 - But may be enough to be important

- Important differences among species in
 - Protein content
 - Protein extractability
 - Non-protein N
Harvest time and dry matter content

Dry matter content in fresh biomass

- W. clover / ryegrass
- Red clover
- R. clover / O. grass

20 May, 1 June, 21 June, 20 May, 27 May, 7 June
Harvest time and extracted protein yield

![Graph showing crude protein yield in green juice for different dates and species.]

- **W. clover / ryegrass**
- **Red clover**
- **R. clover / O. grass**
Harvest time and cysteine content

1st year
- W. clover / ryegrass
- Red clover
- R. clover / O. grass

2nd year

- W. clover / ryegrass
- Red clover
- R. clover / O. grass

20 May | 1 June | 21 June

20 May | 27 May | 7 June
Conclusions on harvest strategies

• Frequent harvesting necessary
 • Protein yield and extractability
 • But also higher cost
 • No effect on amino acid composition
 • 500 kg extracted protein per ha per harvest?

• Balance between value of protein and biomass
S fertilization and amino acid composition - red clover / grass mixture

<table>
<thead>
<tr>
<th>S level (kg ha(^{-1}))</th>
<th>Cysteine</th>
<th>Lysine</th>
<th>Methionine</th>
<th>Threonin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.63(a)</td>
<td>5.01(a)</td>
<td>1.41(a)</td>
<td>3.91(a)</td>
</tr>
<tr>
<td>30</td>
<td>0.67(a)</td>
<td>4.93(a)</td>
<td>1.4(a)</td>
<td>3.91(a)</td>
</tr>
<tr>
<td>60</td>
<td>0.75(a)</td>
<td>5.65(a)</td>
<td>1.58(a)</td>
<td>4.48(a)</td>
</tr>
</tbody>
</table>

MSD

<table>
<thead>
<tr>
<th></th>
<th>0.14 (n.s.)</th>
<th>1.12 (n.s.)</th>
<th>0.31 (n.s.)</th>
<th>0.90 (n.s.)</th>
</tr>
</thead>
</table>

Note: MSD values are not significant (n.s.)
Effects of S fertilization

• No effect on yield
• Increased protein content
• Some effect on amino acid composition
Crops for protein extraction in organic farming

• Stockless organic farms need ley crops with legumes
 • Nitrogen supply to the rotation
 • Weed management
 • Soil fertility

• Annual crops 🙄
 • One early harvest

• Non-legumes 😞?
 • Need high N input for protein production
 • Only in mixtures with legumes

• Cover crops ?
• Vegetable crop residues ?
Relevant crops for protein extraction

Questions?

Kristian Thorup-Kristensen and Nanna Karkov Ytting

Dept. Plant and Environmental Sci.