

Green Biorefining Seminar Aalborg University Denmark Friday 29. June 2018

Green biorefinery and biotechnological work at Wood KPLUS

(Biorefinery linking agriculture/forestry and chemical industry)

BIRGIT KAMM

Wood Kplus, Area Wood Chemistry and Biotechnology, Linz, Österreich and BTU Cottbus-Senftenberg, Deutschland

UDDCD KPLUS

Green biorefinery and the biotechnological work at Wood KPLUS

Content

KPLUS

- 1 Objectives
- 1.1 Use of biomass (RR)
- 1.2 Specialty chemicals
- **1.3 Biorefinery principles**
- 1.4 Biobased platform chemicals and derived specialty chemicals
- 1.5 Market assessment for biobased specialty chemicals-selection
- 2 Wood KLUS
- 2.1 Biotechnology
- 2.2 The Pulp Mill Biorefinery
- 2.3 Lignin derived products

3. Reputation Biorefineries activities, Invitation student camp

* RR- Renewable resources

Objectives Use of biomass (RR=renewable resources)

 13% or 2,7 million tons RR used in German chemical industry, mostly for the production of specialty chemicals.

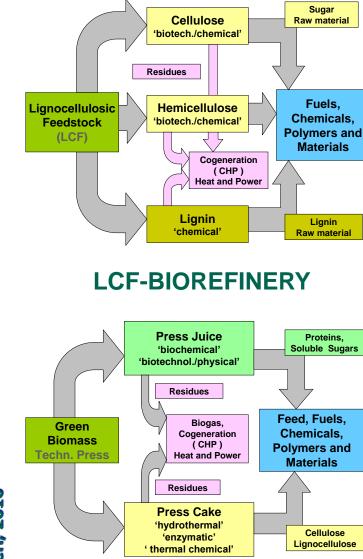
 Until 2030, German chemical companies will use 50% more renewable resources for their processes.

 In Europe, a 10,4 billion EUR specialty chemicals market volume is expected (until 2030).

 Activities in the field of biomass use in Austria on various industrial areas like Upper Austria, Lower Austria, Steiermark, Kärnten

The Chemical Industry 2030 [https://www.vci.de/vci/downloads-vci/2012-12-10-vci-prognos-study-chemistry-2030-short-version.pdß

PRODUCING BIOBASED CHEMICALS USING INDUSTRIAL BIOTECHNOLOGY

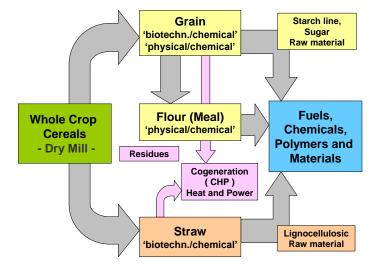

1.2 Specialty chemicals

Specialty chemicals are the base for the production of relatively high priced derivatives, like

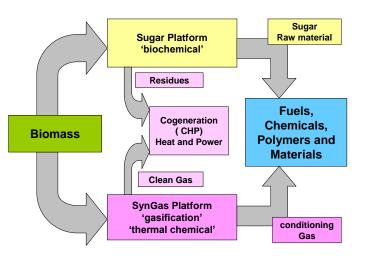
- (1) Engineering Polymers (specialty plastics)
- (2) Consumer chemicals (washing, cleaning and personal care products, fragrances etc.)
- (3) Paints and coatings
- (4) Plant production agents (insecticides, fungicides, nematicides, acaricides, etc.)
- (5) Fuel additives

Example: German chemical industry, year 2011

- 43 % of the chemicals production
- Market volume 67 bn. Euro
- 12% of the world volume of 567 bn. Euro


Sugar

Fuels,


Lignin

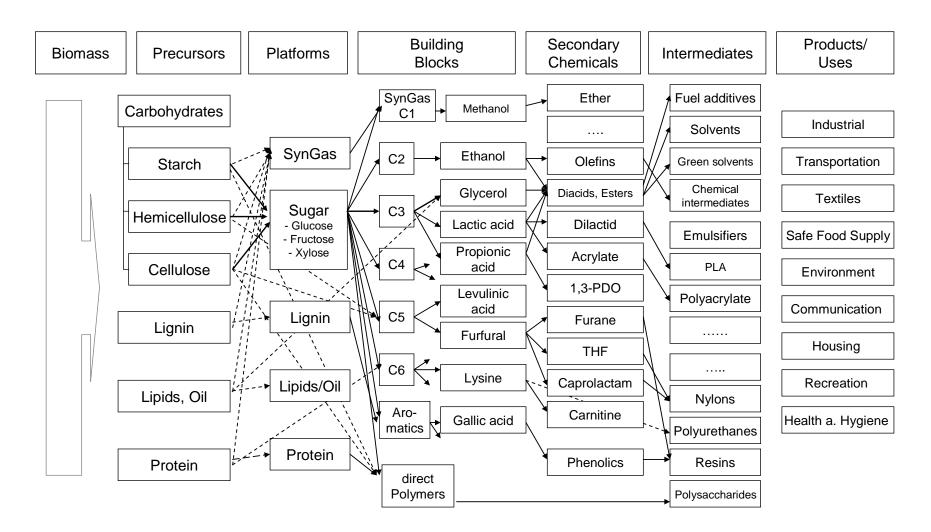
Proteins,

Cellulose

WHOLE CROP-BIOREFINERY

TWO-PLATFORM-CONCEPT

0


U

E D

6

GREEN BIOREFINERY

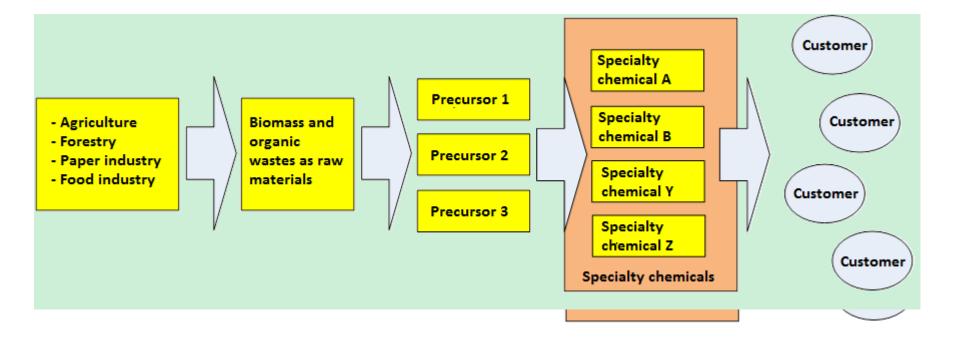
1.4 Biobased platform chemicals and derived specialty chemicals

[Werpy, 2004, Kamm, B. et al; Wiley, 2006, 2010, 2015]

Biobased specialty chemicals 1.5 Market assessment (selection)

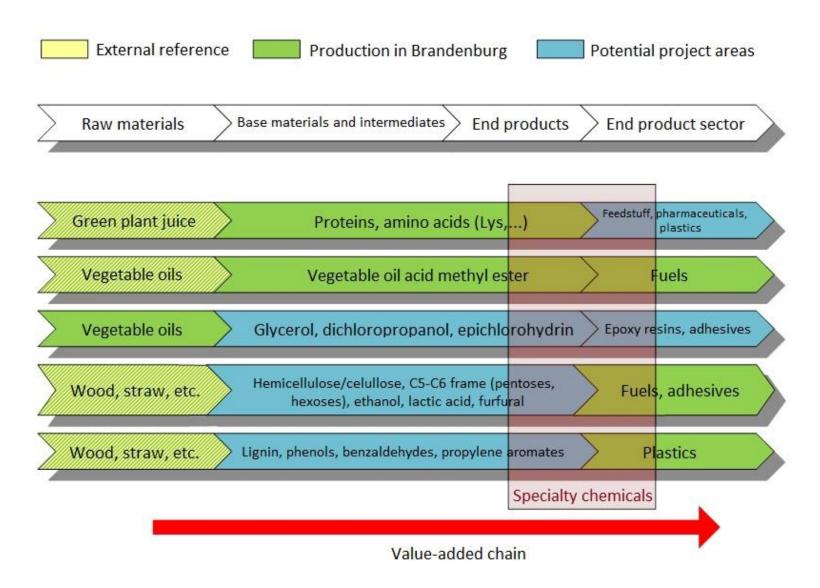
Nr.	DOE´s TOP 15	Source	Derivatives	Use and products	Marketable bio-based products		Note*
					Already available	In the next 10 years	
1	Succinic acid	Fermentation from glucose	1,4-Butanediol, tetrahydrofuran, γ-butyrolactone, maleic acid anhydride, pyrrolidone	Solvents, polyester, polyurethane, nylon, paints, food additives	Yes	Yes	A
2	Fumaric acid	Fermentation from glucose	Same as succinic acid	Same as succinic acid	Yes	Yes	A
3	Malic acid	Enzymatic hydroxylation of fumaric acid by fumarate hydratase	Same as succinic acid	Same as succinic acid	Yes	Yes	A
4	2,5-Furan dicarboxylic acid	Oxidation of 5- hydroxymethylfurfural	2,5- Bishydroxymethylfuran, 2,5-Bis(aminomethyl)- Tetrahydrofuran	Substitution der Terephthalsäure im PET	Demonstra- tion is planned	Yes	В

*A – Beginning of commercialization, B - significant activities [CEN. ACS. Org. 10, 2014]

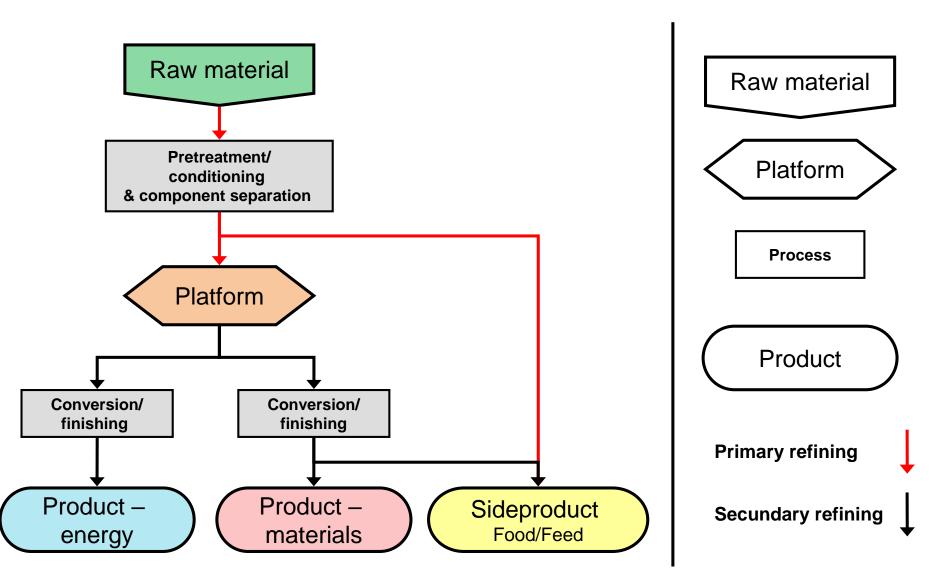

Biobased specialty chemicals – 1.5 Market assessment (selection)

5	3-Hydroxy propionic acid	Fermentation from glucose or glycerin	1,3-propanediol, acrylic acid, acrylamide, methyl acrylate	Polytrimethylene terephthalate, highly resistant carpet fibers, contact lenses	No	Yes	В
6	Glycerin	Chemical or enzymatic transesterification of vegetable oils	Propylene glycol, ethylene glycol, 1,3- propanediol, lactic acid, epichlorohydrin, acrolein	Polyester, soaps and cosmetics, antifreeze agents	Yes	Yes	A
7	Sorbitol	Hydrogenation of glucose	Isosorbide	Flame protection agents, pharmaceuticals, biobased softeners (Polysorb® ID 37), polymers	Yes	Yes	A

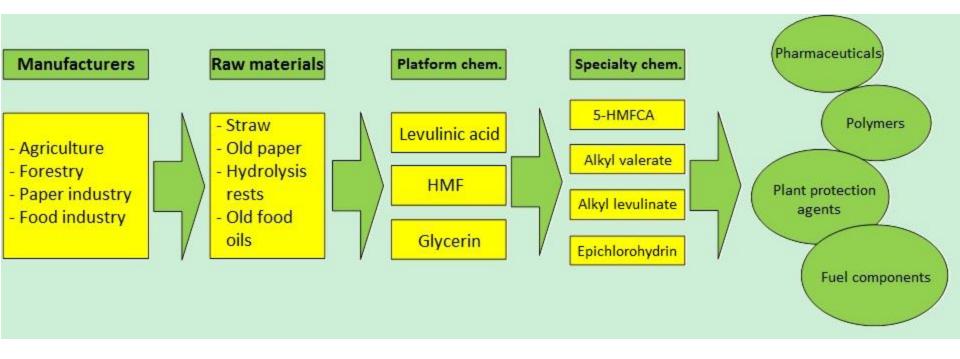
* A-[Fa. Solvay, Belgium, Fa. Zeppoil and Fa. Spolchemiegroup Czech Republic), B- significant activities, [CEN. ACS. Org. 10, 2014]


Biobased specialty chemicals

Starting position in different regions like Germany, Austria Alignment of the value added chain


Biobased specialty chemicals

Current processing potential of bio-based raw materials

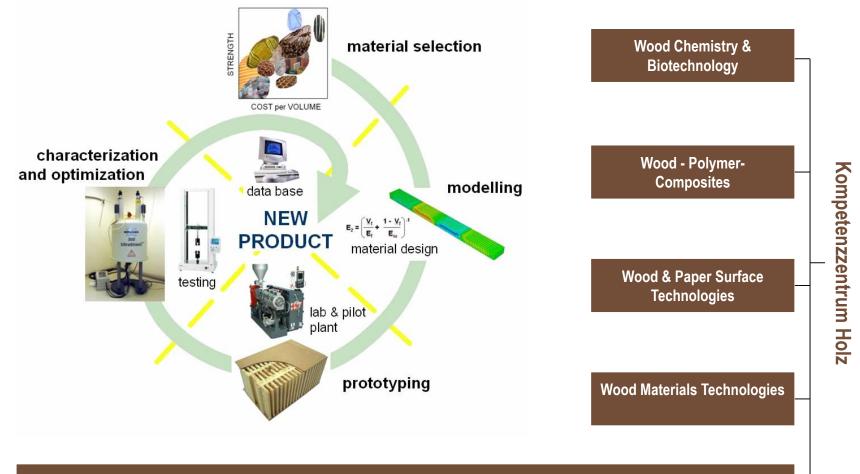


[Fig. from BASF-lecture in the frame Masterplan, cluster pastics, chemicals HF specialty chemicals]

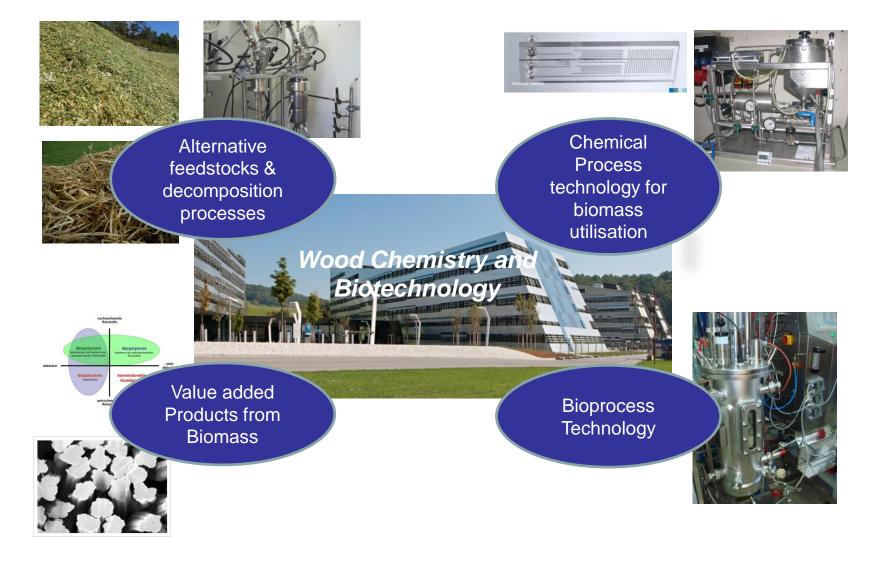
Biobased specialty chemicals by biorefining


New biobased specialty chemicals by biorefining

Example: Potential Analysis State of Brandenburg (Germany), 2015



2. From Fundamentals to Implementations


Lab Space: 2.500 m² / Office Space : 1400m² / 115 Employees / > 200 Projects

Research Areas

Market Analysis & Innovation Research

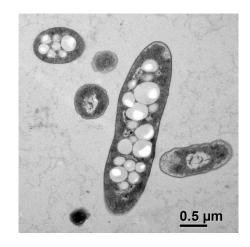
Wood Chemistry & Biotechnology

Process Development - Wood KPlus

- Wood Kplus can contribute along the whole process chain (some examples)
 - Steam Explosion, Refiner, Thermal etc.
 - Inhibitor Screening and Detoxification
 - Biomass decomposition (Hydrolysis)
 - Strain selection, fermentation and optimisation
 - Polymer formulation.....

KPIUS

2.1.Extremophiles as New Process Building Block


- Industrially relevant properties
- Combinations possible (e.g alkalihalophile)

Туре	Range
Thermophile	T = 60-80°C (max. 113 °C)
Psychrophile	T < 15°C (min18°C)
Acidophile	pH< 5 (min. pH=0)
Alkaliphile	pH>9 (max. pH=11)
Halophile	Salt >3,5% (max. 35%)

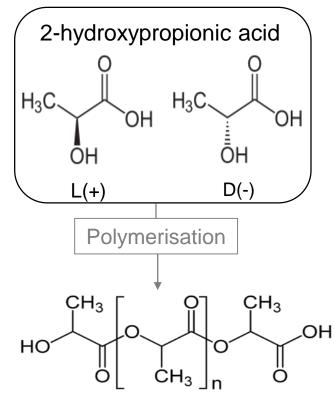
Product fermentation with extremophiles Example – PHA fermentation

• PHA an intracellular biopolymer

- Benefits using Halophiles:
 - Non sterile process
 - Easy cell lysis (osmotic pressure)
 - Conversion of C5 and C6
 - Conversion of polysaccharides possible

KPIUS

WOOD KPLUS

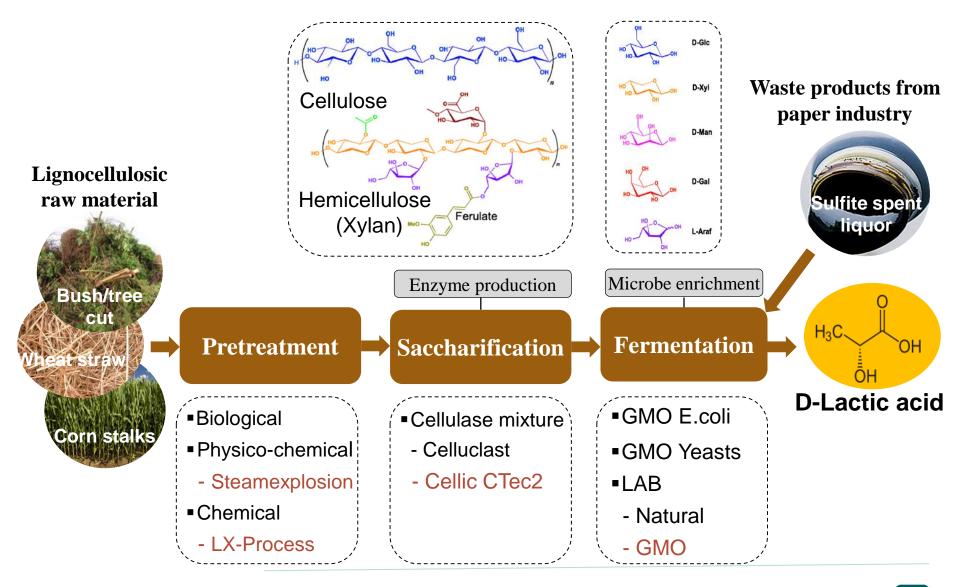

Lactic acid and its industrial applications

Food

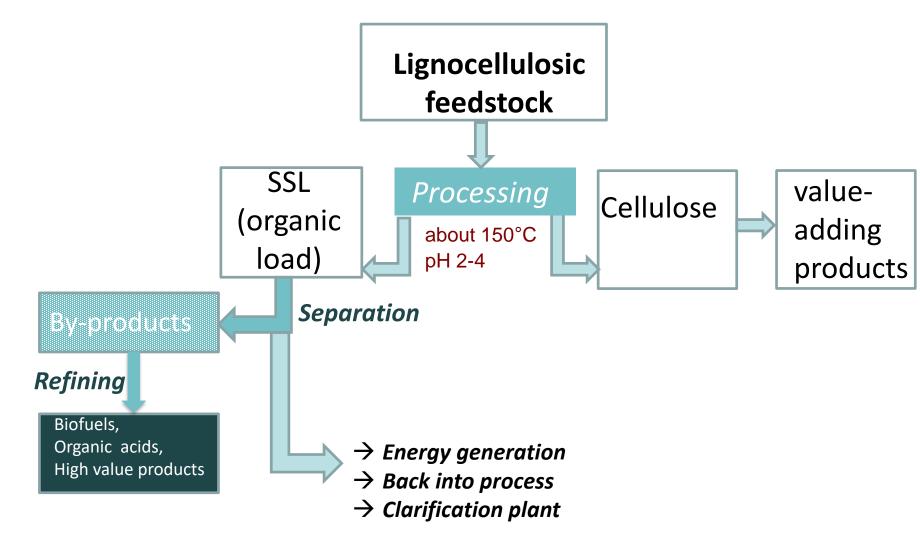
- Preservative
- Flavour
- Acidulant
- Acid mineral fortification

Chemistry

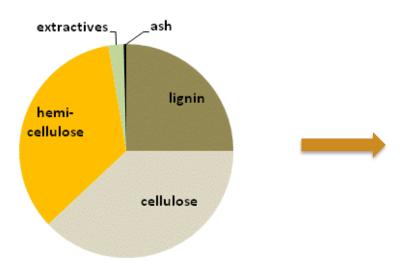
- Agro-chemicals
- Green solvents
- Cleaning agents
- Bioplastic

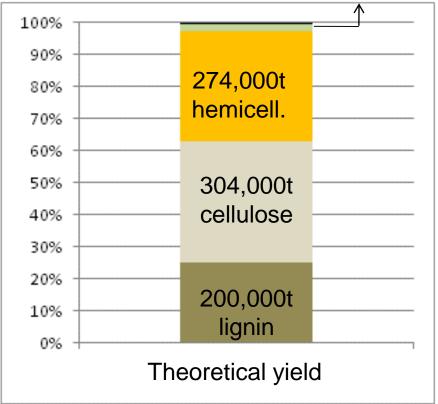

Polylactic acid

Pharmacy


- Chiral intermediates
- Pharmaceuticals
- Dialysis solutions
- Parenteral solutions

Biochemical conversion of lignocellulose to D-Lactic acid


2.2 The Pulp Mill Biorefinery

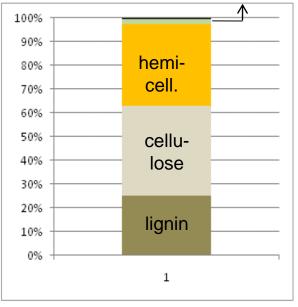

SSL= spent sulphite liquor

Example: A Medium-Sized Pulp Mill Converting 800,000t Beech Wood

18,400t extractives

Composition of beech wood H. Sixta (1986) Lenzinger Berichte 61, 5-11)

Biorefinery Potential


→ cellulose sells as pulp, paper, fibres or derivatives

- → lignin sufficient to provide energy for pulping process
- → hemicellulose needs to sell at a higher price than 0.104€/kg

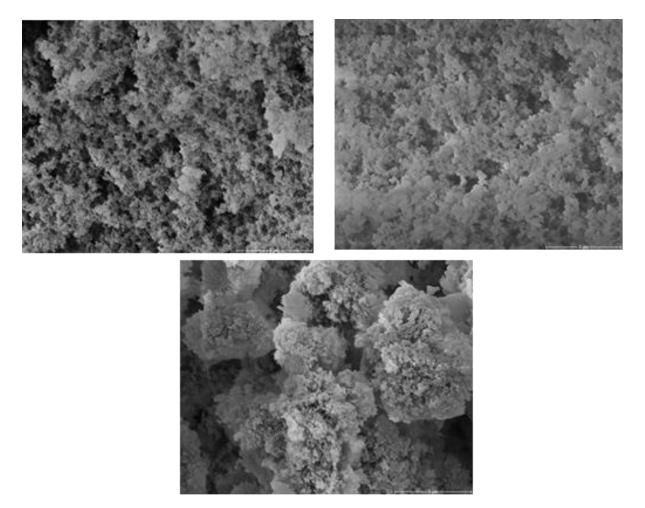
(based on today's oil price - not including CAPEX/OPEX)

Target Product	Selling Price Estimate €/kg	dated from
EtOH	0.50	2015
BuOH	1.89	2015
PHB	6.50	2015

[Prices: From the Sugar Platform to biofuels and biochemicals Final report for the European Commission Directorate-General Energy, N° ENER/C2/423-2012/SI2.673791, April 2015]

Ex. EtOH:

Fermtable hemis <u>in SSL</u>: 120,000 tons yield factor estd. 0.32g/g


→ earnings minus heating value: 6.5 Mio €

Selection of possible value chains to be realized at wood KPLUS

- Development of Wood-PLA compounds (or other biobased popymers) with improved thermo-mechanical properties) and of related high performance products (e.g. 3D-printing)
- Production of high value lignins → product development (e.g. lignin based carbon fibers, respective composites, aerogels, carbogels)
- Development of fully biobased fiber composite materials
- Development of system solutions (e.g. compostable dishes or insecticide releasing carriers for forestry and agriculture)

2.3 Novel Materials from Byproducts: e.g. Lignin Aerogels

SEM-Pictures of the pore structure of different aerogels. (A) 8 %, (B) 13,4 % and (C) 20,7% Lignin-Formaldehyd [wt% in H_2O]. (Zoom 10.000-times).....(B) BET specific surface: 200 qm/g

Reputation, Biorefinery activities

• Editor of the "biorefinery" book series Biorefineries – Industrial Processes and Products (Wiley-VCH)

Vol. 1 + 2 (published January 2006, 2010)

- Author in Ullmann's Encyclopaedia Industrial Chemistry (Wiley-VCH) Technical Chemistry and Biotechnology (2007,2011, 2016)
- Member of the Advisory Board CLEAN-Soil, Air, Water (Wiley-VCH) CHEMSUSCHEM (WILEY-VCH) Biofuels, Bioproducts and Biorefining (Wiley & Sons, Society of Chemical Industry)

Edited by Birgit Kamm, Patrick R. Gruber, Michael Kamm WILEY-VCH

Biorefineries – Industrial Processes and Products

Status Quo and Future Directions

Reputation, Biorefinery-Activities

B. Kamm (Ed.) Microorganisms in Biorefineries, In: Microbiology Monographs, Series Editor A. Steinbüchel, 2015

http://www.springer.com/life+sciences/ microbiology/book/978-3-662-45208-0

Topics covered include: new metabolic pathways of microbes living on green plants and in silage; using lignocellulosic hydrolysates for the production of polyhydroxyalkanoates; fungi such as Penicillium as host for the production of heterologous proteins and enzymes; bioconversion of sugar hydrolysates into lipids; production of succinic acid, lactones, lactic acid and organic lactates using different bacteria species; cellulose hydrolyzing bacteria in the production of biogas from plant biomass; and isoprenoid compounds in engineered microbes.

Invitation

Student Camp Biorefineries and Biobased Industrial Products 25. - 28. February 2019

Venue: Linz and Lenzing (Austria)

THANK YOU FOR INVITATION.

Contact

Prof. Birgit Kamm, Dr. rer. nat. habil.

Honorary Professor BTU Cottbus – Senftenberg Kompetenzzentrum Holz GmbH Key Researcher E-mail b.kamm@kplus-wood.at

Dr. Viktoria Leitner, Dr. Gerdt Müller

Team Leaders Biotechnology Area Wood Chemistry and Biotechnology E-Mail <u>v.leitner@kplus-wood.at</u> E-Mail g.mueller@kplus-wood.at

A-4040 Linz Altenberger Straße 69 www.wood-kplus.at

